Системы счисления
Внимание!
Для решения задач ГИА - 9 достаточно знать и понимать как кодируется информация в двоичном счислении. Знания о 8-ричной и 16-ричной системах желательны, но не обязательны!
Для начала надо запомнить
1) Отсчет начинается не с 1, как привыкли в первом классе, а с 0
2) Название счисления "Десятичная", "Двоичная", "Восьмеричная", "Шестнадцатеричная" - обозначает то, что следующий разряда начинается с числа по названию которого обозначена система. Других чисел для продолжения ряда цифр просто нет.
Сложность для восприятия представляет шестнадцатиричная система, в которой после 15 следуют цифры обозначаемые буквами от "А" до "F".
Важно помнить, что следующий кратный разряд обозначается степенью числа разряда кратного 10.
Таблица систем счисления
Десятичная А10 | Двоичная А2 | Восьмеричная А8 | Шестнадцатиричная А16 |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
16 | 10000 | 20 | 10 |
17 | 10001 | 21 | 11 |
18 | 10010 | 22 | 12 |
19 | 10011 | 23 | 13 |
20 | 10100 | 24 | 14 |
21 | 10101 | 25 | 15 |
22 | 10110 | 26 | 16 |
23 | 10111 | 27 | 17 |
24 | 11000 | 30 | 18 |
25 | 11001 | 31 | 19 |
26 | 11010 | 32 | 1A |
27 | 11011 | 33 | 1B |
28 | 11100 | 34 | 1C |
Пресчёт систем счисления между собой
1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:
При переводе удобно пользоваться таблицей степеней двойки:
Таблица 4. Степени числа 2
n (степень) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
Пример .Числоперевести в десятичную систему счисления.
2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:
При переводе удобно пользоваться таблицей степеней восьмерки:
Таблица 5. Степени числа 8
n (степень) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
![]() |
1 | 8 | 64 | 512 | 4096 | 32768 | 262144 |
Пример .Числоперевести в десятичную систему счисления.
3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:
При переводе удобно пользоваться таблицей степеней числа 16:
Таблица 6. Степени числа 16
n (степень) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
![]() |
1 | 16 | 256 | 4096 | 65536 | 1048576 | 16777216 |
Пример .Числоперевести в десятичную систему счисления.
4. Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.
Пример.Числоперевести в двоичную систему счисления.
5. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.
Пример.Числоперевести в восьмеричную систему счисления.
6. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.
Пример.Числоперевести в шестнадцатеричную систему счисления.
7. Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой (табл. 3).
Пример.Числоперевести в восьмеричную систему счисления.
8. Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой (табл. 3).
Пример.Числоперевести в шестнадцатеричную систему счисления.
9. Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой.
Пример.Числоперевести в двоичную систему счисления.
10. Для перевода шестнадцатеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной тетрадой.
Пример.Числоперевести в двоичную систему счисления.
11. При переходе из восьмеричной системы счисления в шестнадцатеричную и обратно, необходим промежуточный перевод чисел в двоичную систему.
Пример 1.Числоперевести в восьмеричную систему счисления.
Пример 2.Числоперевести в шестнадцатеричную систему счисления.
Дополнительный материал
Перевод чисел в различные системы счислений
Когда занимаешься настройками сетей различного масштаба и каждый день сталкиваешься с вычислениями – то такого рода шпаргалки заводить не обязательно, все и так делается на безусловном рефлексе. Но когда в сетях ковыряешься очень редко, то не всегда вспомнишь какая там маска в десятичной форме для префикса 21 или же какой адрес сети при этом же префиксе. В связи с этим я и решил написать несколько маленьких статей-шпаргалок по переводом чисел в различные системы счислений, сетевым адресам, маскам и т.п. В это части пойдет речь о переводе чисел в различные системы счислений.
1. Системы счислений
Когда вы занимаетесь чем-то связанным с компьютерными сетями и ИТ, вы по любому столкнетесь с этим понятием. И как толковый ИТ-шник вам нужно разбираться в этом хотя бы чу-чуть даже если на практике вы это будете применять очень редко.
Рассмотрим перевод каждой цифры из IP-адреса98.251.16.138в следующие системы счислений:
- Двоичная
- Восьмеричная
- Десятичная
- Шестнадцатеричная
1.1 Десятичная
Так как цифры записаны в десятичной, перевод с десятичной в десятичную пропустим 🙂
1.1.1 Десятичная → Двоичная
Как мы знаем двоичная система счисления используется практически во всех современных компьютерах и многих других вычислительных устройствах. Система очень проста – у нас есть только 0 и 1.
Для преобразования числа с десятиной в двоичную форму нужно использовать деление по модулю 2 (т.е. целочисленное деление на 2) в результате чего мы всегда будем иметь в остатке либо 1, либо 0. При этом результат записываем справа налево. Пример все поставит на свои места:
Рисунок 1.1 – Перевод чисел из десятичной в двоичную систему
Рисунок 1.2 – Перевод чисел из десятичной в двоичную систему
Опишу деление числа 98. Мы делим 98 на 2, в результате имеем 49 и остаток 0. Далее продолжаем деление и делим 49 на 2, в результате имеем 24 с остатком 1. И таким же образом добираемся до 1-ки или 0-ка в делимом. Затем результат записываем справа налево.
1.1.2 Десятичная → Восьмеричная
Восьмеричная система – это целочисленная система счисления с основанием 8. Т.е. все числа в ней представлены диапазоном 0 – 7 и для перевода с десятичной системы нужно использовать деление по модулю 8.
Рисунок 1.3 – Перевод чисел из десятичной в восьмеричную систему
Деление аналогично 2-чной системе.
1.1.3 Десятичная → Шестнадцатеричная
Шестнадцатеричная система почти полностью вытеснила восьмеричную систему. У нее основание 16, но используются десятичные цифры от 0 до 9 + латинские буквы от A(число 10) до F(число 15). С ней вы сталкиваетесь каждый раз, когда проверяете настройки сетевого адаптера — это МАС-адрес. Так же, когда используется IPv6.
Рисунок 1.4 – Перевод чисел из десятичной в шестнадцатеричную систему
1.2 Двоичная
В предыдущем примере мы перевели все десятичные числа в другие системы счислений, одна из которых двоичная. Теперь переведем каждое число с двоичной формы.
1.2.1 Двоичная → Десятичная
Для перевода чисел с двоичной формы в десятичную нужно знать два нюанса. Первый – у каждого нолика и единички есть множитель 2 в n-й степени, при котором n увеличивается справа налево ровно на единичку. Второй – после перемножения все числа нужно сложить и мы получим число в десятичной форме. В итого у нас будет формула такого вида:
D = (an× pn-1) + (an-1× pn-2) + (an-2× pn-3) +…, (1.2.1)
Где,
D – это число в десятичной форме, которое мы ищем;
n– количество символов в двоичном числе;
a – число в двоичной форме на n-й позиции (т.е. первый символ, второй, и т.п.);
p – коэффициент, равный 2,8 или 16 в степениn(в зависимости от системы счисления)
К примеру возьмем число 110102. Смотрим на формулу и записываем:
- Число состоит из 5 символов ( n =5)
a5= 1, a4= 1, a3= 0, a2= 1, a1= 0
p = 2 (так как переводим из двоичной в десятичную)
В итоге имеем:
D = (1 × 25-1) + (1 × 25-2) + (0 × 25-3) + (1 × 25-4) + (0 × 25-5) = 16 + 8 + 0 + 2 + 0 = 2610
Кто привык записывать справа на лево, форму будет выглядеть так:
D = (0 × 25-5) + (1 × 25-4) + (0 × 25-3) + (1 × 25-2) + (1 × 25-1) = 0 + 2 + 0 + 8 + 16 = 2610
Но, как мы знаем, от перестановки слагаемых сумма не меняется. Давайте теперь переведем наши числа в десятичную форму.
Рисунок 1.5 – Перевод чисел из двоичной в десятичную систему
1.2.2 Двоичная → Восьмеричная
При переводе нам нужно двоичное число разбить на группы по три символа справа налево. Если последняя группа не состоит из трех символов, то мы просто возмещаем недостающие биты ноликами. К примеру:
10101001 =010 101 001
1011100 =001 011 100
Каждая группа битов – это одно из восьмеричных чисел. Чтобы узнать какое, нужно использовать написанную выше формулу 1.2.1 для каждой группы битов. В результате мы получим.
Рисунок 1.6 – Перевод чисел из двоичной в восьмеричную систему
1.2.3 Двоичная → Шестнадцатеричная
Здесь нам нужно двоичное число разбивать на группы по четыре символа справа налево с последующим дополнением недостающих битов группы ноликами, как писалось выше. Если последняя группа состоит из ноликов, то их нужно игнорировать.
110101011 =0001 1010 1011
1011100 =0101 1100
001010000 =000101 0000 = 0101 0000
Каждая группа битов – это одно из шестнадцатеричных чисел. Используем формулу 1.2.1 для каждой группы битов.
Рисунок 1.7 – Перевод чисел из двоичной в шестнадцатеричную систему
1.3 Восьмеричная
В этой системе у нас могут возникнуть сложности только при переводе в 16-ричную систему, так как остальной перевод проходит гладко.
1.3.1 Восьмеричная → Двоичная
Каждое число в восьмеричной системе – это группа из трех битов в двоичной системе, как писалось выше. Для перевода нам нужно воспользоваться табличкой-шпаргалкой:
Рисунок 1.8 – Шпора по переводу чисел из восьмеричной системы
Используя эту табличку переведем наши числа в двоичную систему.
Рисунок 1.9 – Перевод чисел из восьмеричной в двоичную систему
Немного опишу вывод. Первое число у нас 142, значит будет три группы по три бита в каждой. Юзаем шпору и видим, что цифра 1 это 001, цифра 4 это 100 и цифра 2 это 010. В результате имеем число 001100010.
1.3.2 Восьмеричная → Десятичная
Здесь мы используем формулу 1.2.1 только с коэффициентом 8 (т.е. p=8). В результате имеем
Рисунок 1.10 – Перевод чисел из восьмеричной в десятеричную систему
Возьмем первое число. Исходя из формулы 1.2.1:
- Число состоит из 3 символов ( n =3)
a3= 1, a2= 4, a1= 2
p = 8 (так как переводим из восьмеричной в десятичную)
В результате имеем:
D = (1 × 83-1) + (4 × 83-2) + (2 × 83-3) = 64 + 32 + 2 = 9810
1.3.3 Восьмеричная → Шестнадцатеричная
Как писалось раньше, для перевода нам нужно сначала перевести числа в двоичную систему, потом с двоичной в шестнадцатеричную, поделив на группы по 4-ре бита. Можно использовать следующею шпору.
Рисунок 1.11 – Шпора по переводу чисел из шестнадцатеричной системы
Эта табличка поможет перевести из двоичной в шестнадцатеричную систему. Теперь переведем наши числа.
Рисунок 1.12 – Перевод чисел из восьмеричной в шестнадцатеричную систему
1.4 Шестнадцатеричная
В этой системе та же проблема, при переводе в восьмеричную. Но об этом позже.
1.4.1 Шестнадцатеричная → Двоичная
Каждое число в шестнадцатеричной системе – это группа из четырех битов в двоичной системе, как писалось выше. Для перевода нам можно воспользоваться табличкой-шпаргалкой, которая находиться выше. В результате:
Рисунок 1.13 – Перевод чисел из шестнадцатеричной в двоичную систему
Возьмем первое число – 62. Используя табличку (рис. 1.11) мы видим, что 6 это 0110, 2 это 0010, в результате имеем число 01100010.
1.4.2 Шестнадцатеричная → Десятичная
Здесь мы используем формулу 1.2.1 только с коэффициентом 16 (т.е. p=16). В результате имеем
Рисунок 1.14 – Перевод чисел из шестнадцатеричной в десятеричную систему
Возьмем первое число. Исходя из формулы 1.2.1:
- Число состоит из 2 символов ( n =2)
a2= 6, a1= 2
p = 16 (так как переводим из шестнадцатеричной в десятичную)
В результате имеем.
D = (6 × 162-1) + (2 × 162-2) = 96 + 2 = 9810
1.4.3 Шестнадцатеричная → Восьмеричная
Для перевода в восьмеричную систему нужно сначала перевести в двоичную, затем разбить на группы по 3-и бита и воспользоваться табличкой (рис. 1.8). В результате:
Рисунок 1.15 – Перевод чисел из шестнадцатеричной в восьмеричную систему